Novel insights on the genetics of susceptibility to necrotrophic fungal pathogens of durum and bread wheat

Agnes Szabo-Hever

- Introduction of the wheat populations
- Introduction of the wheat pathogens *Pyrenophora tritici-repentis* and *Parastagonospora nodorum*
- Methods
- Genetic mapping of tan spot resistance in durum wheat
- Genetic mapping of Septoria nodorum blotch resistance in durum and spring wheat
- Related studies

- Introduction of the wheat populations
- Introduction of the wheat pathogens *Pyrenophora tritici-repentis* and *Parastagonospora nodorum*
- Methods
- Genetic mapping of tan spot resistance in durum wheat
- Genetic mapping of Septoria nodorum blotch resistance in durum and spring wheat
- > Related studies

>>> Durum wheat

- > Triticum durum L. ssp. durum
- 2n = 4x = 28AABB genomes
- Grown on ~13.5 million ha globally In the U.S. ~2 million ha

Producing regions: Middle East

North America

Southern Europe

North Africa

Use: pasta couscous Mediterranean breads semolina-based products

Global Durum Wheat Panel (GDP)

- Initiated in 2015
- Identify beneficial alleles in durum wheat germplasm
- Make these alleles available for breeding programs
- Collection of 2,503 tetraploid wheat lines
- Included 987 Triticum turgidum spp.
- > Selected 510 Triticum turgidum ssp. durum

332 modern accessions

178 landraces

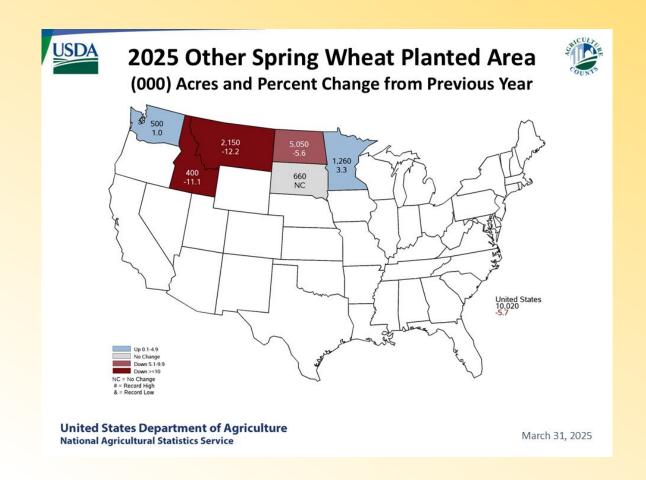
Represented lines from 41 countries, CIMMYT, and ICARDA

The Global Durum Wheat Panel (GDP): An International Platform to Identify and Exchange Beneficial Alleles

Elisabetta Mazzucotelli^{1†}, Giuseppe Sciara^{2†}, Anna M. Mastrangelo^{3,4}, Francesca Desiderio¹, Steven S. Xu⁵, Justin Faris⁵, Matthew J. Hayden^{6,7}, Penny J. Trickers, Hakan Ozkans, Viviana Echeniques, Brian J. Steffensons, Ron Knox12, Abdoul A. Niane13, Sripada M. Udupa13, Friedrich C. H. Longin14, Daniela Marone³, Giuseppe Petruzzino³, Simona Corneti², Danara Ormanbekova², Curtis Pozniak15, Pablo F. Roncallo10, Diane Mather8, Jason A. Able8, Ahmed Amri13, Hans Braun15, Karim Ammar16, Michael Baum13, Luigi Cattivelli1, Marco Maccaferri2, Roberto Tuberosa² and Filippo M. Bassi^{13*}

OPEN ACCESS

CIMMYT: International Maize and Wheat Improvement Center ICARDA: International Center for Agricultural Research in the Dry Areas



Hard red spring wheat (HRSW)

- Triticum aestivum
- 2n = 6x = 42AABBDD genomes
- Grown on >200 million ha globally HRSW: ~10 million ha in the U.S. Producing regions: North Dakota Montana Minnesota
- Use: bagel artisan hearth breads pizza crust

Hard red spring wheat panel (HRSWP)

- USDA-ARS National Small Grains Collection
- Total of 812 accessions
 - cultivars
 - breeding lines
 - cultivated accessions
 - landraces
 - genetic stocks
- Lines from 88 countries

A Genome-Wide Association Study of Resistance to Stripe Rust (Puccinia striiformis f. sp. tritici) in a Worldwide Collection of Hexaploid Spring Wheat (Triticum aestivum L.)

Marco Maccaferri,*.†,1 Junli Zhang,*.¹ Peter Bulli,‡.¹ Zewdie Abate,* Shiaoman Chao,§ Dario Cantu,** Eligio Bossolini,* Xianming Chen,** Michael Pumphrey,* and Jorge Dubcovsky*,**,2

*Department of Plant Sciences, University of California, Davis, California 95616, †Department of Agricultural Sciences (DipSA), University of Bologna, Bologna 40127, Italy, [‡]Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164-6420, \$USDA-ARS, 1605 Albrecht Blvd, Fargo, North Dakota 58105, **Department of Viticulture and Enology, University of California, Davis, California 95616, ††USDA-ARS, Wheat Genetics, Quality Physiology, and Disease Research Unit, and Department of Plant Pathology, Washington State University, Pullman, Washington 99164, and ^{‡‡}Howard Hughes Medical Institute, Chevy Chase, Maryland 20815

G3. Genes | Genomes | Genetics

Volume 5 | March 2015 |

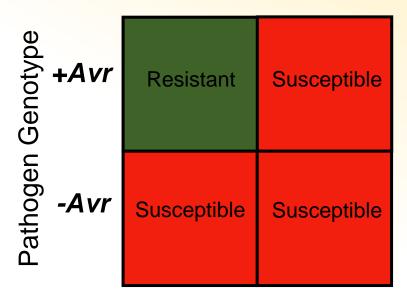
Outline

- Introduction of the wheat populations
- Introduction of the wheat pathogens Pyrenophora tritici-repentis and Parastagonospora nodorum
- Methods
- Genetic mapping of tan spot resistance in durum wheat
- Genetic mapping of Septoria nodorum blotch resistance in durum and spring wheat
- > Related studies

Necrotrophic wheat pathogens

Classical gene-for-gene model (effector-triggered immunity)
biotrophic plant-pathogen interactions

Host Genotype


R_

rr

Pathogen Genotype

+NE

-NE

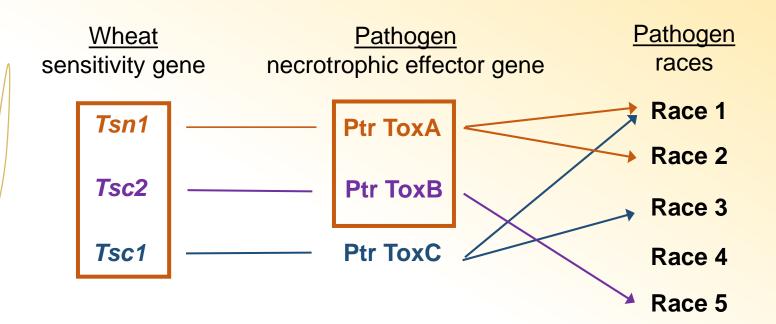
Toxin-based inverse gene-for-gene model (effector-triggered susceptibility)
necrotrophic
plant-pathogen interactions

Host Genotype

S_

SS

Sensitive	Insensitive
Insensitive	Insensitive

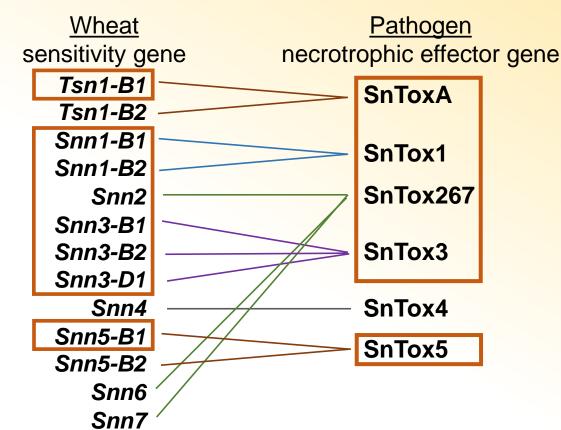


>>> Pyrenophora tritici-repentis

Tan spot

- Symptoms: necrotic lesions surrounded by chlorotic borders
- Yield loss up to 50%

https://plantwiseplusknowledgebank.org/



>>> Parastagonospora nodorum

Septoria nodorum blotch (SNB)

Symptoms: lens-shaped or elliptical necrotic lesions with pale yellow halo

Yield losses: 30 - 50 %

https://cropprotectionnetwork.org

- Introduction of the wheat populations
- Introduction of the wheat pathogens *Pyrenophora tritici-repentis* and Parastagonospora nodorum
- Methods
- Genetic mapping of tan spot resistance in durum wheat
- Genetic mapping of Septoria nodorum blotch resistance in durum and spring wheat
- > Related studies

Phenotyping

Genotyping

GDP

Tan spot

Infiltration

Ptr ToxA Ptr ToxB

Spray inoculation

Pti2 (race 1)

86-124 (race 2)

331-9 (race 3)

L13-192 (race 4)

DW5 (race 5)

SNB

<u>Infiltration</u>

SnToxA

SnTox1

SnTox267

SnTox3

SnTox5

HRSWP

SNB

Infiltration

SnToxA

SnTox1

SnTox267

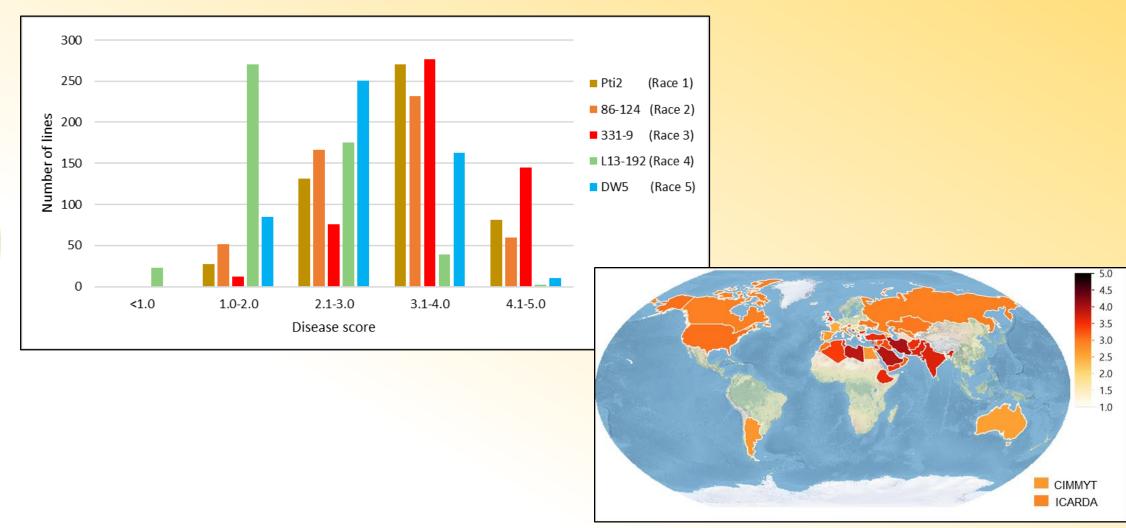
SnTox3

SnTox5

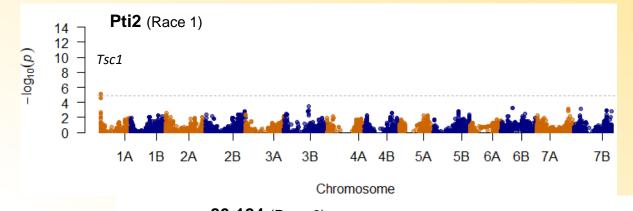
Illumina iSelect 90K SNP array

GWAS in R using MLM method

Outline


- Introduction of the wheat populations
- Introduction of the wheat pathogens *Pyrenophora tritici-repentis* and *Parastagonospora nodorum*
- Methods
- Genetic mapping of tan spot resistance in durum wheat
- Genetic mapping of Septoria nodorum blotch resistance in durum and spring wheat
- > Related studies

Global Durum Panel GWAS - tan spot



>>>>

Global Durum Panel GWAS results - tan spot

Produced effector:

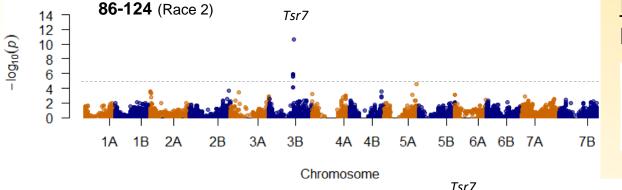
Ptr ToxA + Ptr ToxC

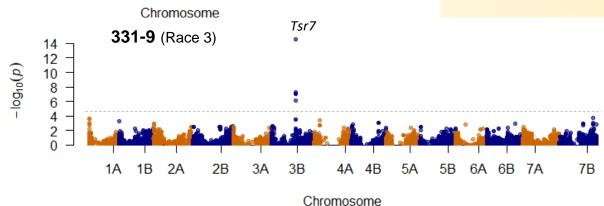
: G3-Genes | Genomes | Genetics

Volume 6 | December 2016

New Insights into the Roles of Host Gene-Necrotrophic Effector Interactions in Governing Susceptibility of Durum Wheat to Tan Spot and Septoria nodorum Blotch

Simerjot K. Virdi,* Zhaohui Liu,† Megan E. Overlander,† Zengcui Zhang,† Steven S. Xu,† Timothy L. Friesen,†† and Justin D. Faris†.†


Produced effector:

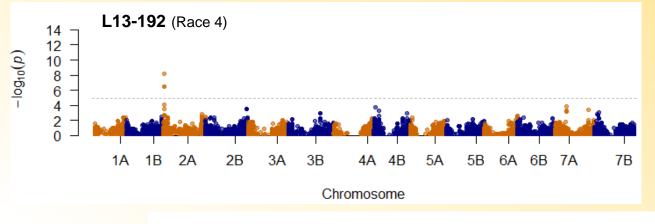

Ptr ToxA

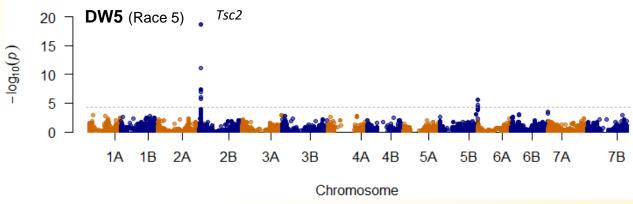
Theoretical and Applied Genetics (2020) 133:829–841

Identification of a major dominant gene for race-nonspecific tan spot resistance in wild emmer wheat

Justin D. Faris¹ · Megan E. Overlander · Gayan K. Kariyawasam · Arron Carter · Steven S. Xu · Zhaohui Liu · Zhaohui Liu

Produced effector:

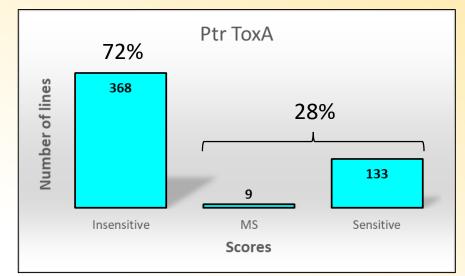

Ptr ToxC

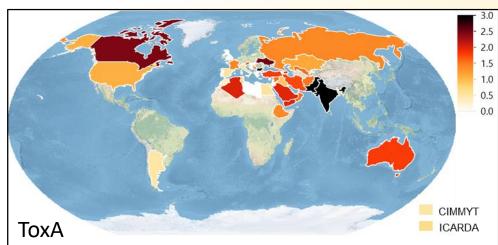


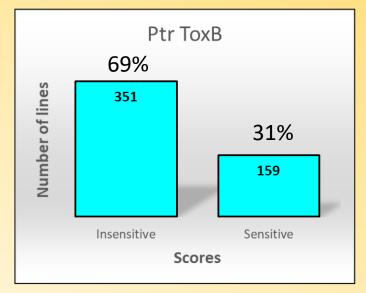
Global Durum Panel GWAS results - tan spot

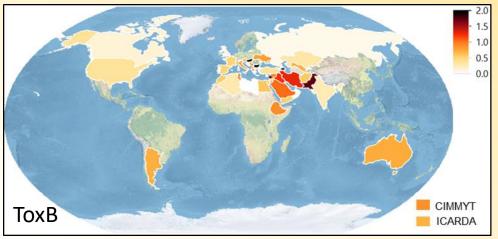
No known effector

Produced effector:

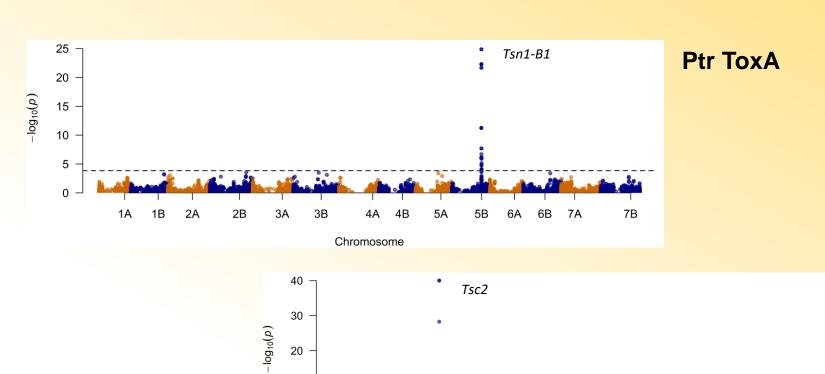

Ptr ToxB







Global Durum Panel GWAS – tan spot



Global Durum Panel GWAS results - tan spot

10

Ptr ToxB

6B

Chromosome

>>>>

Global Durum Panel GWAS results - tan spot

Infiltration area

1.5

1

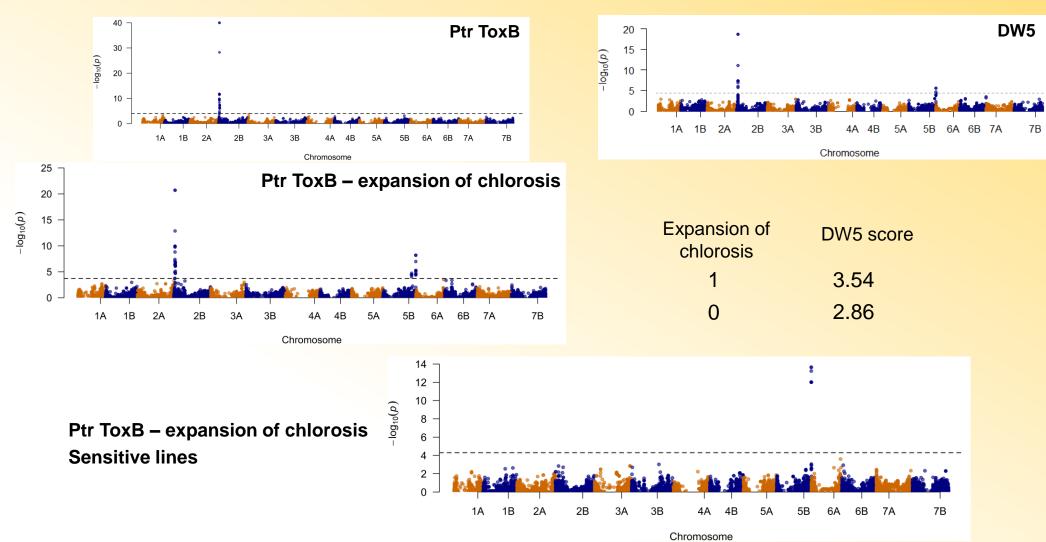
0.5

0

Gurminder Singh

Chlorosis extended in 64% of the sensitive lines.

Infiltration area Expansion of chlorosis


2 1
2 0
1.5 1

>>>>

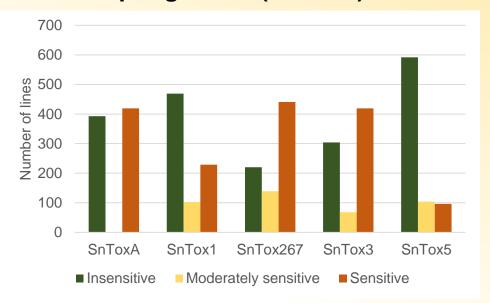
Global Durum Panel GWAS results - tan spot

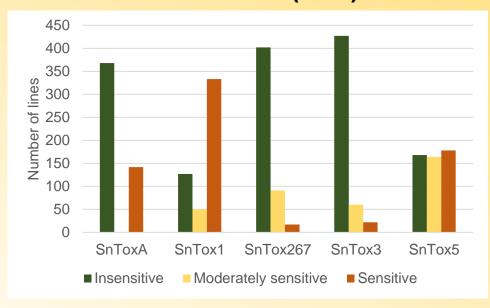
Global Durum Panel GWAS results – tan spot Summary bullet points

- > Tsr7 is a major resistance factor in durum wheat.
- ▶ Tsc1 and Tsc2 play significant roles in conferring susceptibility.
- Tsn1 is not a relevant factor in tan spot development in durum.
- New QTL on 2AS associated with race 4 isolate.
- Novel trait characterized by expanding chlorosis and increased disease severity. QTL on chromosome 5BL.
- ▶ Breeders are recommended to select for *Tsr7* and eliminate *Tsc1*, *Tsc2*, and *Tsn1-B1*.
- > 14 lines resistant to tan spot.

Outline

- Introduction of the wheat populations
- Introduction of the wheat pathogens *Pyrenophora tritici-repentis* and *Parastagonospora* nodorum
- Methods
- Genetic mapping of tan spot resistance in durum wheat
- Genetic mapping of Septoria nodorum blotch resistance in durum and spring wheat
- > Related studies

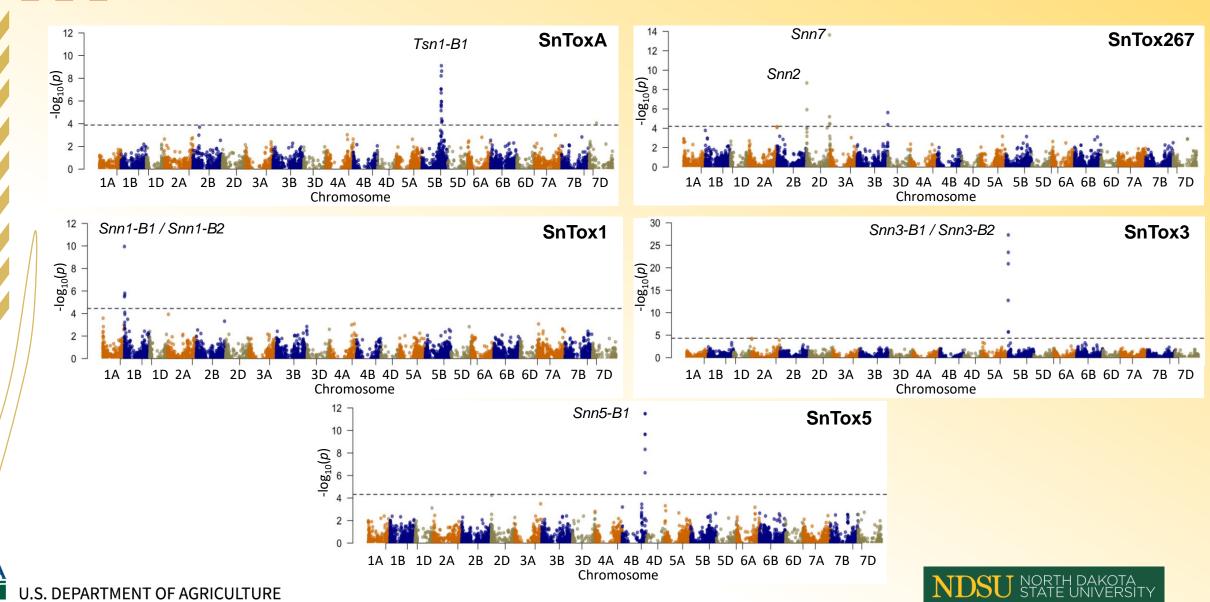


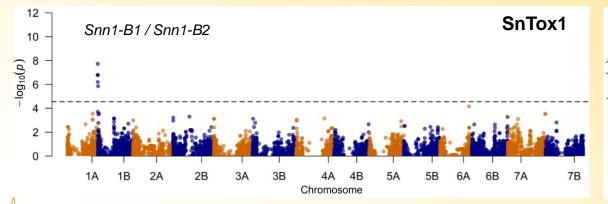


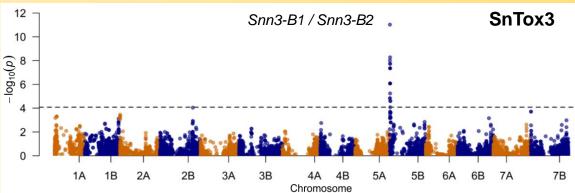
Disease scores - SNB

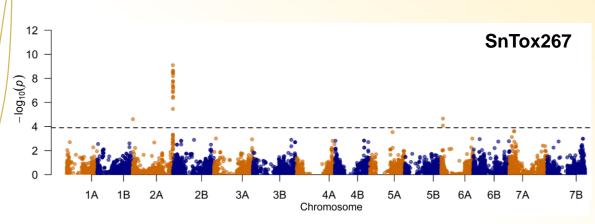
Spring wheat (HRSWP)

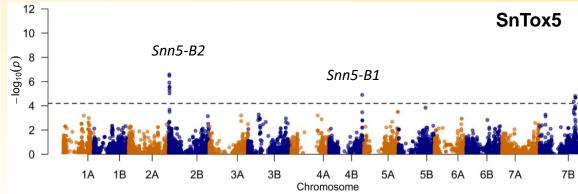
Durum wheat (GDP)




>>>>


Hard Red Spring Wheat Panel GWAS results - SNB




>>>>

Global Durum Panel GWAS results - SNB

SNB resistance in durum and spring wheat Summary bullet points

HRSW breeders

- High frequency NEs: SnToxA, SnTox267, SnTox3
- > Should eliminate Tsn1-B1, Snn2, Snn3-B1, Snn3-B2, and Snn7
- Select the resistant allele at 3BL QTL associated with SnTox267
- Identified 41 lines insensitive to all five NEs

Durum breeders

- High frequency NEs: SnToxA, SnTox1, SnTox5
- > Should eliminate *Tsn1-B1*, *Snn1-B1*, *Snn1-B2*
- Select the resistant alleles at 2BS, 4BL and 7BL QTL associated with SnTox5
- Identified 32 lines insensitive to all five NEs

Outline

- Introduction of the wheat populations
- Introduction of the wheat pathogens *Pyrenophora tritici-repentis* and *Parastagonospora nodorum*
- Methods
- Genetic mapping of tan spot resistance in durum wheat
- Genetic mapping of Septoria nodorum blotch resistance in durum and spring wheat
- Related studies

- Identified two copies of Snn1 (Snn1-B1 and Snn1-B2).
- Snn1-B2 evolved relatively recently compared to the paralog Snn1-B1.
- Developed KASP markers eliminating sensitive lines, and a Snn1 null allele KASP marker, which shows the presence of the gene in durum and hexaploid wheat.

Sudeshi Seneviratne

- Snn3-D1 (chromosome 5D) has been cloned from Ae. tauschii, and a candidate gene Snn3-B1 (chromosome 5B) (homeolog) was identified to recognize SnTox3.
- While characterizing and validating Snn3-B1, Snn3-B2 (paralog) was identified which also recognizes SnTox3 and leads to susceptibility.
- Developed diagnostic markers for showing the absence of Snn3-B1 and Snn3-B2
- Evaluation of the HRSW panel showed that several alleles of each gene exist in germplasm.

Zengcui Zhang

MPMI Vol. 38, No. 2, 2025, pp. 315-327, https://doi.org/10.1094/MPMI-10-24-0125-FI

RESEARCH

Protein Kinase-Major Sperm Protein (PK-MSP) Genes Mediate Recognition of the Fungal Necrotrophic Effector SnTox3 to Cause Septoria nodorum Blotch in Wheat

Zengcui Zhang,¹ Katherine L. D. Running,² Sudeshi Seneviratne,² Amanda R. Peters Haugrud,¹ Agnes Szabo-Hever,² Gurminder Singh,² Kateřina Holušová,³ István Molnár,³,⁴ Jaroslav Doležel,³ Timothy L. Friesen,¹ and Justin D. Faris¹,†

- ¹ USDA-ARS, Cereal Crops Research Improvement Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A.
- ² Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, U.S.A.
- ³ Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc 77900, Czech Republic
- ⁴ Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, 2462 Martonvásár, Hungary

Accepted for publication 28 March 2025.

- Identified two loci controlling ToxA sensitivity (termed Tsn1-B1 and Tsn1-B2).
- Developed breeder-friendly markers (KASP, STARP) to identify ToxA-insensitive lines.
- Markers were validated in the GDP and HRSW panels.

Katherine Running

Theoretical and Applied Genetics (2025) 138:164 https://doi.org/10.1007/s00122-025-04952-6

ORIGINAL ARTICLE

Development of diagnostic markers for the disease susceptibility gene *Tsn1* in wheat reveals novel resistance alleles and a new locus required for ToxA sensitivity

Katherine L. D. Running¹ · Krishna Acharya¹ · Tiana M. Roth¹ · Gurminder Singh¹ · Agnes Szabo-Hever¹ · Amanda R. Peters Haugrud² · Jason D. Fiedler² · Timothy L. Friesen² · Justin D. Faris²

- Molecular cloning and characterization of tan spot susceptibility gene Tsc2 in wheat.
- Analyzed the allelic diversity of Tsc2.
- Developed a diagnostic genetic marker (KASP) for markerassisted elimination of Tsc2 in wheat.
- Marker successfully validated in the GDP and HRSW panels.

Gurminder Singh

Acknowledgements

USDA-ARS

- **Steven Xu**
- **Justin Faris**
- Zengcui Zhang
- Amanda Peters Haugrud
- Katherine Running
- **Gurminder Singh**
- Sudeshi Seneviratne
- Megan Overlander
- Cayley Steen
- Stephanie McCoy
- **Heaven James**
- **Timothy Friesen**
- Danielle Holmes

NDSU

- **Zhaohui Liu**
- Gongjun Shi

- **Elias Elias**
- Evan Salsman
- Jason Axtman
- Sally Mann

ICARDA, Morocco

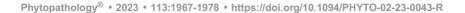
Filippo Bassi

University of Bologna, Italy

- Marco Maccaferri
- Roberto Tuberosa

CREA Research Centre for Genomics and Bioinformatics, Italy

Luigi Cattivelli



USDA-ARS Research Participation Program

For more details...

Genetics and Genomics of Resistance

Association Mapping of Resistance to Tan Spot in the Global Durum Panel

Agnes Szabo-Hever, Gurminder Singh, 6 Amanda R. Peters Haugrud, Katherine L. D. Running, Sudeshi Seneviratne, Zengcui Zhang, Gongjun Shi, Filippo M. Bassi, Marco Maccaferri, Luigi Cattivelli, Roberto Tuberosa, S Timothy L. Friesen, ¹ Zhaohui Liu, ³ Steven S. Xu, ⁷ and Justin D. Faris ^{1,†}

Plant Disease • 2025 • 109:851-861 • https://doi.org/10.1094/PDIS-05-24-0990-RE

Evaluation of Durum and Hard Red Spring Wheat Panels for Sensitivity to Necrotrophic Effectors Produced by Parastagonospora nodorum

Agnes Szabo-Hever,^{1,2} Katherine L. D. Running,² Sudeshi Seneviratne,² Gurminder Singh,² Zengcui Zhang,¹ Amanda R. Peters Haugrud, Marco Maccaferri, Roberto Tuberosa, Timothy L. Friesen, 6 Steven S. Xu, 4 and Justin D. Faris^{1,†}

Thank you for your attention!

Contact

agnes.szabohever@ndsu.edu

www.linkedin.com/in/agnes-szabo-hever/

